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Abstract A control-volume based method for the numerical calculation of axisymmetric
incompressible fluid flow and heat transfer is presented. The proposed method extends the
staggered grid approach to unstructured triangular meshes. The velocities are stored at the
vertices and the edges of a triangle, pressure and temperature are stored at the vertices.
Accordingly, velocities are interpolated in a quadratic way, pressure and temperature linearly. The
accuracy of the proposed method is examined for a number of different testproblems. Compared to
a linear interpolation scheme implemented in the same code, more accurate solutions and smaller
computation times are obtained for the proposed quadratic scheme. The method was designed for
and is about to be applied to the numerical simulation of crystal growth.

1. Introduction
Hybrid control-volume finite element methods (CVFEMs) for fluid flow and
heat transfer are constructed by amalgamation and extensions of concepts that
are native to finite volume methods like easy physical interpretation and the
local and global conservation fullfilled even on coarse grids, and the geometric
flexibility traditionally associated with finite element methods. Since the first
appearence of CVFEMs, dated already to the late 60s, a lot of different methods
have been proposed. The methods differ in the arrangement of the variables
like colocated arrangements with special interpolation techniques (Prakash and
Patankar, 1985; Rice and Schnipke, 1986) or staggered arrangements (Baliga
and Patankar, 1983; Despotis and Tsangaris, 1995; Hookey and Baliga, 1988;
Rida et al., 1997) to avoid the well-known effect of a checkerboard pressure
field. Different upwind techniques have been proposed like mass weighted
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(MAW) (Schneider and Raw, 1986, 1987a,b), flow oriented (FLO) (Baliga and
Patankar, 1983; Prakash and Patankar, 1985) and streamline upwind schemes
(Hassan et al., 1983; Raithby, 1976; Swaminathan and Voller, 1992).
Furthermore, the methods have been extended to axisymmetric (Masson
et al., 1994; Rida et al., 1997) and three-dimensional flows (Costa et al., 1995;
Muir and Baliga, 1986; Saabas and Baliga, 1994). A detailed overview of
CVFEMs can be found in (Baliga, 1997).

In this work, a method is proposed which extends the staggered grid
approach to unstructured triangular meshes. The velocities are stored at the
vertices and the edges of a triangle are interpolated in a quadratic way on a
triangular grid element. Pressure and temperature are interpolated only
linearly on an element, thus the method relates well to the Babuška-Brezzi-
condition in a finite element context. An iterative SIMPLE(R)-type algorithm
(Patankar and Spalding, 1972), implemented entirely on matrix level, is used for
the pressure-velocity coupling. In contrast to former works, the volume and
surface integrals of the integral conservation equations are computed exactly
by the use of the commercial software package MAPLE. The performance of
the proposed method is examined by comparing it to results obtained using a
linear interpolation for the velocity components together with the pseudo-
velocity interpolation described in Prakash and Patankar (1985) to avoid the
checkerboard pressure field. Both interpolation schemes are implemented in the
software package CrysVUn, for which a brief description is given later.

The software package CrysVUn was especially designed for global
modelling of crystal growth processes (Hainke et al., 2001; Kurz, 1998; Kurz
et al., 1999; Metzger, 2000). It contains a physical model for crystal growing,
uses the finite volume technique for the discretization of the modelling
equations and works with unstructered grids. Several physical phenomena –
such as non-linear heat conduction, radiative heat transfer treated with the well
known method of view factors and a model for the analysis of thermoelastic
stress leading to predictions concerning the quality of the crystals – are
implemented. The possibility of inverse modelling allows to control the
temperature in an arbitrary number of control points by adjusting the heating
power of the heating elements. A graphical user interface allows an easy usage
of the program.

Global modelling of 2D/axisymmetric growth facilities requires the
triangulation of complex geometries, including crucible, heaters and other
constructive elements, see Müller (1998) and Müller and Fischer (2001) for a
more detailed discussion. Typical applications of the global modelling
approach are the definition of process parameters (Backofen et al., 2000;
Metzger and Backofen, 2000) or the determination of boundary conditions for
detailed three-dimensional calculations (Derby et al., 2001; Yeckel et al., 2001).

In order to keep the computational effort as small as possible, a high-
order interpolation scheme for fluid flow computations may help to reduce
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the number of required grid elements. Therefore, in this work the
performance of a quadratic interpolation scheme in a CVFE context is
examined by applying the proposed method to a number of different
testproblems.

2. Numerical treatment
2.1 Domain discretization and choice of control volumes
The underlying domain is discretized by an unstructured triangular mesh:
First the two-dimensional cross-section of the axisymmetric domain for
w ¼ const is divided into a triangular grid. The basic C++ classes – vertex,
edge, triangle – for the grid have their origin in the grid generator in
Eichenseher (1996).

In the proposed method, velocity components are stored at the vertices and
at the edges of the triangles, pressure and temperature only at the vertices.
Figure 1 shows a triangular element with vertices I, R and L and edges oI, oR
and oL together with the storage position of the unknown velocities ur, uw, uz

and scalars p and T. In order to obtain control volumes, the mid points of the
edges are joined and each of the resulting sub-triangles is subdivided by
joining the midpoints with the centroid. For the discretization of the continuity
equation and the temperature equation, the larger control volumes shown in
Figure 2(a) are applied, whereas the discretization of the momentum equations
makes use of the smaller control volumes shown in Figure 2(b). So far, the
definition of control volumes is equivalent to the micro/macro element
arrangement proposed in Baliga and Patankar (1983). The difference is due to
the quadratic interpolation of the velocity components on a triangle. If a linear
interpolation is chosen, the definition of control volumes as shown in Figure 2(b)
could be interpreted as a simple grid refinement. In contrast, the quadratic

Figure 1.
In the case of the

quadratic interpolation,
the velocity components

are stored on vertices
and edges (†) of a

triangular element,
pressure and

temperature on vertices
(A) only
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Ansatz, discussed in Section 2.3, leads to dependencies of all six components
inherent to a triangular element.

2.2 Integral conservation equations
In finite-volume methods, the starting point of the discretization is the integral
formulation of the governing equations. The equations for 2D
ða ¼ 0Þ=axisymetric ða ¼ 1Þ incompressible fluid flow with the Boussinesq
approximation read (Baehr and Stephan, 1998; Ferzinger and Perić, 1999).
r-Momentum equation:

Z
›V

½ðrururÞ · nr þ ðruzurÞ · nz� dS 2 a

Z
V

r
uwuw

r
dV

¼

Z
›V
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›r
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w-Momentum equation (only for the axisymmetric case):
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Figure 2.
(a) Large control volumes
obtained by joining the
centroid of the triangular
element with the middle
points of the edges
(Donald diagram).
(b) Small control volumes
constructed with a
similar procedure for the
sub-triangles as shown
in Figure 1
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z-Momentum equation:

Z
›V

½ðruruzÞ · nrþðruzuzÞ · nz� dS ¼

Z
›V

m
›uz

›r

� �
· nr þ m
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›z

� �
· nz

� �
dS

2

Z
V

›p

›z
dV 2

Z
V

bgzrðT 2 Tref Þ dV þ

Z
V

sz dV

ð3Þ

Continuity equation:

Z
›V

½ðrurÞ · nr þ ðruzÞ · nz� dS ¼ 0 ð4Þ

Temperature equation:

Z
›V

½ðcprurTÞ · nr þ ðcpruzTÞ · nz� dS ¼

Z
›V

l
›T

›r

� �
· nr þ l

›T

›z

� �
· nz

� �
dS

þ

Z
V

sT dV ð5Þ

In these equations, the following abbreviations hold: dV ¼ ð2prÞadA and
dS ¼ ð2prÞadl: Here, dV denotes the volume of the control volume, dA is the
area of the corresponding two-dimensional cross-section, dS stands for the
surface of the control volume and dl for its one-dimensional counterpart.
The velocity components in r-, w- and z- direction are ur, uw and uz, p denotes
the pressure of the fluid, T its temperature, sr, sw, sz and sT stand for
volumetric source terms. Constant material properties are the density r, the
dynamic viscosity m, the acceleration due to gravity gz, the volumetric
expansion coefficient b, the specific heat cp and the heat conductivity l. The
vector ðnr; nzÞ is the outward normal. The factor 2p is omitted in all equations
in the sequel.

2.3 Interpolation functions
The derivation of algebraic approximations to the integral formulation of the
conservation equations requires the specification of element based
interpolation functions for the dependent variables ur, uw, uz, p and T. In
order to simplify the formulation of the resulting coefficients, a local (g, d )
coordinate system is defined as stated in Figure 3.

The interpolation functions are expressed with regard to this local
co-ordinate system. Quadratic interpolation for the unknown f reads
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fquad :¼ fquadðg; dÞ :

¼ ð4g2 4gd2 4g2ÞfoL þ ð24gdþ 4d2 4d2ÞfoR þ 4gdfoI

þ ð2d2 2 dÞfL þ ð2g2 2 gÞfR þ ð1 2 3g2 3dþ 2g2 þ 4gd

þ 2d2ÞfI ; ð6Þ

whereas linear interpolation reads

f lin :¼ f linðg; dÞ :¼ ð1 2 g2 dÞfI þ gfR þ dfL: ð7Þ

The partial derivatives of f quad and f lin, e.g. ›fquad=›r and ›f lin=›z; read

›fquad

›r
¼ ½ð42 4d2 8gÞfoL 2 4dfoR þ 4dfoI þ ð4g2 1ÞfR

þ ð23þ 4gþ 4dÞfI � ·
2zL þ zI

DV
þ ½24gfoL þ ð24gþ 42 8dÞfoR

þ 4gfoI þ ð21þ 4dÞfL þ ð23þ 4gþ 4dÞfI � ·
zR 2 zI

DV

ð8Þ

and

›f lin

›z
¼

ðfR 2fI Þ · ðrL 2 rI Þ

DV
þ
ðfL 2fI Þ · ðrI 2 rRÞ

DV
; ð9Þ

where

DV :¼ ðzR 2 zI Þ · ðrL 2 rI Þ2 ðzL 2 zI Þ · ðrR 2 rI Þ ð10Þ

Figure 3.
Local coordinate system
for the formulation of
interpolation functions
and the parametrization
of the control volumes
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denotes the negative of twice the area of the triangle with vertices I, R and L,
the (r, z ) co-ordinates of which being (rI, zI), (rR, zR) and (rL, zL) respectively.

2.4 Parametrization of control volumes
In order to obtain approximations for surface integrals in equations (1-5), lines
representing control volume surfaces in the two-dimensional cross-section of
the three-dimensional control volume have to be parametrized, e.g. in case of
the larger control volumes the line oL ! S (cf. Figure 1) can be written in the
local co-ordinate system (g, d ) with the parametrization factor t

g :¼ g ðtÞ :¼ 1
2 2

1
6 t; t e ½0; 1�

d :¼ d ðtÞ :¼ 1
3 t; t e ½0; 1�

8<
:

9=
;; ð11Þ

the calculation of the vector normal yields

ðnr; nzÞ ¼
2zL 2 zI 2 zR

6
;2

2rL 2 rI 2 rR

6

� �
: ð12Þ

For the smaller control volumes, e.g. the line MIoL ! SS (cf. Figure 1) can be
written in the local co-ordinate system (g, d )

g :¼ g ðtÞ :¼ 2 1
12 tþ

1
4 ; t e ½0; 1�

d :¼ d ðtÞ :¼ 1
6 t; t e ½0; 1�

8<
:

9=
;; ð13Þ

the calculation of the vector normal yields

ðnr; nzÞ ¼
2zL 2 zI 2 zR

12
;2

2rL 2 rI 2 rR

12

� �
ð14Þ

In order to obtain approximations for volume integrals in equations (1-5), areas
representing volumes in the two-dimensional cross-section of the three-
dimensional control volume have to be parametrized, e.g. the triangle K(I, MIoL,
SS ) (cf. Figure 1) can be written in the local co-ordinate system (g, d ) employing
the parametrization factors t and s

g :¼ g ðt;sÞ :¼ 1
4 t2

1
12s t e ½0; 1�;s e ½0; t�

d :¼ d ðt;sÞ :¼ 1
6s t e ½0; 1�;s e ½0; t�

8<
:

9=
;: ð15Þ
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The functional determinant of the coordinate transformation is given by

FDKðI ;MIoL;SSÞ ¼ FDrz!gd · FDgd!tg

¼ ðrR · zL 2 rR · zI 2 rI · zL 2 rL · zR þ rL · zI þ rI · zRÞ · 1=24: ð16Þ

2.5 Approximation of volume and surface integrals
In the sequel, only the discretization of the z-momentum equation is explained,
as the discretization of the other equations is similar.

As axisymmetry ða ¼ 1Þ in these equations yields an additional dependency
on the radius, the radius r in the (g, d ) co-ordinate system

r ¼ rðg; dÞ ¼ rI þ gðrR 2 rI Þ þ dðrL 2 rI Þ ð17Þ

will occur in most of the following equations.
2.5.1 Diffusive terms. The approximation of the diffusive term of equation

(3) for line MIoL ! SS reads

Z
MIoL!SS

m
›uz

›r

� �
· nr þ m

›uz

›z

� �
· nz

� �
dS

<
Z 1

t¼0

m · raðgðtÞ; dðtÞÞ ·
›uz

›r
ðgðtÞ; dðtÞÞ · nr dt

þ

Z 1

t¼0

m · raðgðtÞ; dðtÞÞ ·
›uz

›z
ðgðtÞ; dðtÞÞ · nz dt

ð18Þ

with r defined in equation (17), g(t ) and d(t ) defined in equation (13), ›uz=›r
calculated in equation (8) – substitute f by uz – and ›uz=›z calculated
analogously, the outer normal (nr, nz) taken from equation (14).

2.5.2 Convective terms. A straightforward central discretization of the
convective part of the z-momentum equation (3) for line MIoL ! SS reads

r

Z
MIoL!SS

½ðuruzÞ · nr þ ðuzuzÞ · nz� dS

< r

Z 1

t¼0

uold
r uzðgðtÞ; dðtÞÞ raðgðtÞ; dðtÞ · nr dt

þ r

Z 1

t¼0

uold
z uzðgðtÞ; dðtÞÞ raðgðtÞ; dðtÞÞ · nz dt

ð19Þ
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with r defined in equation (17), g(t ) and d(t ) defined in equation (13), uz

calculated in equation (6) – substitute f by uz –, the outer normal (nr, nz) taken
from equation (14). The old velocities uold

r and uold
z can be defined by equation

(6) – substitute f by uold
r or uold

z and take the old values of ur and uz

(cf. SIMPLE(R) algorithm, Section 3).
2.5.3 Volume integrals. The treatment of volume integrals is demonstrated

for the pressure gradient in equation (3). The approximation for other volume
terms is similar.Z

KðI ;MIoL;SSÞ

›p

›z
dV <FDKðI ;MIoL;SSÞ ·

Z 1

t¼0

Z t

s¼0

raðgðt;sÞ;dðt;sÞÞ
›p

›z
dsdt ð20Þ

with r defined in equation (17), g (t, s ) and d (t, s ) defined in equation (15),
›p/›z calculated in equation (9) – substitute f by p – FDK(I, MIoL

, SS ) given by
equation (16).

2.6 Derivation of linear equations
In order to derive linear equations between the unknowns, all integrals in the
preceding section are evaluated and inserted into the integral conservation
equations (1-5). For example, the z-momentum equation discretized on MIoL !
SI then yields an equation between the unknowns uz,I, uz,R, uz,L, uz,oI, uz,oR, uz,oL

in the convective and the diffusive part and pI, pR, pL in the pressure gradient,
the convective and diffusive part readingZ

MIoL!SI

½ðru0
ruzÞ · nr þ ðru0

zuzÞ · nz� dS

2

Z
MIoL!SI

m
›uz

›r

� �
· nr þ m

›uz

›z

� �
· nz

� �
dS

< C z
I · uz;I þ C z

R · uz;R þ C z
L · uz;L þ C z

oI · uz;oI þ C z
oR · uz;oR þ C z

oL · uz;oL ð21Þ

The coefficients C z
i appearing in the linear equations are technically rather

complex, but not complicated. They were calculated using the mathematical
software Maple. All these coefficients form entries in several matrices
(cf. Sections 2.7 and 2.9).

2.7 Assemblation of discretization coefficients
For each node in the calculation domain (internal node or boundary node),
where the dependent variable, ur, uw, uz, p or T, is unknown, the appropriate
conservation principle has to be applied to the control volume surrounding this
node. In case of e.g. node I in Figure 1, the integral conservation equations (1-3),
when applied to the smaller control volumes (larger control volumes in case of
the continuity equation (4) and the temperature equation (5)) can be written as
follows:
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Z
MIoL!SS

surface terms dS þ

Z
KðI ;MIoL;SSÞ

volume terms dV

þ ðanalogous surface term integration on line SS ! MIoRÞ

þ ðanalogous volume term integration on triangle I ; SS;MIoRÞ

þ ðsimilar contributions from other triangular elements associated

with vertex I Þ

þ ðboundary conditions; if applicableÞ

¼ 0

ð22Þ

The form of equation (22) emphasizes that the discretization coefficients can be
assembled by scanning all triangles in the calculation domain element-by-
element and storing the discretization coefficients of surface and volume terms
in the appropriate row of the discretization matrix. The resulting discretization
matrix is sparse. The assemblation is facilitated by pointer structures and
degrees of freedom implemented in C++.

2.8 Boundary conditions
The treatment of Dirichlet boundary conditions is straightforward, e.g. in case
of equation (21) and a fixed velocity value at vertex R, the term C z

R · uz;R is
moved to the right hand side of the equation, instead of Cz

R being stored in the
matrix. At the axis of symmetry ur and uw are set to zero.

In the case of line I ! L (cf. Figure 1) being part of an outflow boundary,
additional surface terms for the volumetric balance of e.g. vertex I, have to be
taken into account. For example, the contribution to the continuity equation
along line I ! oL reads

Z
I!oL

½ðrurÞ · nr þ ðruzÞ · nz� dS

<
Z 1

t¼0

r urðgðtÞ;dðtÞÞ raðgðtÞ;dðtÞÞ · nr dt

þ

Z 1

t¼0

r uzðgðtÞ;dðtÞÞ raðgðtÞ;dðtÞÞ · nz dt

ð23Þ
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with a parametrization of line I ! oL for g, d, nr, nz similar as described in
Section 2.4.

In the case of symmetry conditions no additional fluxes appear through the
specified boundaries, thus no additional terms have to be taken into account.

2.9 Resulting matrix equations
Let in the following, N denote the number of unknown velocity values in the
calculation domain and M stand for the number of p-unknowns.
Momentum equations. The assemblation of all convective and diffusive terms
in the momentum equations results into an N £ N -matrix A and an
N £ 1-vector rh~sA containing Dirichlet boundary data of the velocity
components.

The assemblation of pressure gradient terms yields an N £ M -matrix B. The
dimension N here is due to the use of the smaller control volumes for the
discretization of the momentum equations, dimension M reflects that there are
less p-unknowns than ur-, uw- or uz-unknowns.

With the N £ 1-vector u~v denoting the unknown velocities at the vertices
and edges of the triangular elements in the calculation domain and the
M £ 1-vector ~p denoting the unknown pressure terms, the matrix equation
which stands for the discretization of the momentum equations (1-3) finally
reads:

A · u~v ¼ rh~sA þ B · ~p ð24Þ

Continuity equation. Assemblation of all surface terms in the continuity
equation (volume terms do not occur) results into an M £ N -matrix C and an
M £ 1-vector rh~sC containing Dirichlet boundary data of ur, uw and uz. The
dimension M here is due to the use of the larger control volumes for
the discretization of the continuity equation, dimension N reflects that the
unknown velocities are located both at the vertices and the edges.

With the N £ 1-vector u~v denoting the unknown velocities, the matrix
equation standing for the discretization of the continuity equation finally reads:

C · u~v ¼ rh~sC ð25Þ

Temperature equation. The storage of the discretization coefficients of the
convective terms has been adapted to the solution procedure used in Kurz,
(1998) for heat conduction and is not further discussed at this point.

3. Solution methods
The solution methods for the resulting set of coupled equations (24) and (25)
(and temperature equation) are based on the SIMPLE resp. SIMPLER
algorithm (Patankar, 1980). This means that the equations are solved
sequentially until convergence, the non-linearity and the coupling of variables
being taken into account by outer iterations. For the solution of the linear
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equation systems the CrysVUn-user can choose from a range of solvers and
preconditioners taken from the packages SuperLU and Spooles.

For the inner iterations different solvers may be used for momentum and
pressure: the best performance was found for an iterative solver (BiCSTAB) for
the momentum equation, whereas a direct solver (GSSV) for the pressure
(-correction in the case of SIMPLE) equation is used.

3.1 Simple algorithm
The SIMPLE solution algorithm is implemented algebraically, i.e. purely on a
matrix level. It starts with the solution of the momentum equation (24) with an
underrelaxation according to (Patankar, 1980), taking the old or initially
guessed pressure field. As the obtained velocity field u~v* does not fullfill
continuity (equation 25), velocities and pressure have to be corrected

u~v ¼ u~v* þ u~vcorr; ð26Þ

~p ¼ ~p* þ ~pcorr: ð27Þ

By inserting the corrected values in equation (24) and subtracting the equation
from the momentum equation with the preliminary velocity field, an expression
for the velocity correction is obtained

u~vcorr ¼ A21
D · B · ~pcorr; ð28Þ

where only the diagonal elements of A are taken into account. Inserting the
corrected velocities in equation (25) yields after re-arranging an expression for
the pressure correction

C · A21
D · B · ~pcorr ¼ rh~sC 2 C · u~v; ð29Þ

thus after solution of equation (29) and subsequent underrelaxation, corrected
velocities and pressure are obtained according to equations (26) and (27).

3.2 SIMPLER algorithm
A possibility to compute directly the pressure field is given by the SIMPLER
algorithm, which in our matrix notation can be written as follows:

We start from the momentum-equation (24), replacing the matrix A by the
sum of its diagonal elements (AD) and its off-diagonal-elements (AND):

ðAD þ ANDÞ · u~v ¼ rh~sA þ B · ~p ð30Þ

which can be rearranged as

u~v ¼ A21
D · ðrh~sA 2 AND · u~vÞ þ A21

D · B · ~p ð31Þ

or
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u~v ¼ ûv þ A21
D · ðB · ~pÞ ð32Þ

Replacing u~v in the continuity equation (25) by u~v and re-arranging leads to

C · A21
D · B · ~p ¼ C · u~v þ C · A21

D ðAND · u~v 2 rh~sAÞ ð33Þ

from which the pressure can be computed directly.

3.3 Pseudo-velocity interpolation
Mainly for the sake of comparison, an equal-order scheme has been
implemented, where velocities and pressure are stored on the vertices. To
avoid the well-known checkerboard effect on the pressure field, the approach
proposed by Prakash and Patankar (1985) has been adopted. This approach is
quite similar to the earlier described SIMPLER-method. The only difference is
that the continuity-matrix C is built using the pseudo-velocities u~v, which are
computed at the vertices and assumed to vary linearily between them, resulting
in a scheme where the pressure-contribution of the center-vertex of an element
does not vanish.

4. Applications
Different testproblems for 2D and for axisymmetric fluid flow have been
chosen for validating the implementation of the proposed method. The
quadratic scheme is compared to a linear interpolation of the velocities
regarding accuracy and computation time. The computations were done with a
standard PentiumIII processor with 550 MHz.

4.1 2D testcases
4.1.1 Flow in complex geometries. The implementation of the equations for 2D
buoyancy driven flow is validated by using a testcase proposed in Demirdžić
et al. (1992). The geometry consists of a cylinder whose wall is maintained at
a hot temperature enclosed by a square cavity, where the horizontal walls are
assumed adiabatic, the vertical walls are kept at a low temperature. The
cylinder center is slightly displaced from the cavity center. The fluid properties
are chosen such that flows at Ra ¼ 106 with Pr ¼ 10 resp. Pr ¼ 0:1 result. The
temperature field, streamlines as predicted on the finest grid for a flow with
Pr ¼ 10 and parts of the used grids are shown in Figure 4. The calculated
Nusselt number along the cold wall for flows at Pr ¼ 10 and Pr ¼ 0:1 is shown
in Figure 5. All calculations were performed with the SIMPLE algorithm. The
convergence to the benchmark values is obvious, thus validating the
implementation.
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This testcase shows that it is possible to compute flows even in complex
geometries with the proposed method. It should be noted, that stable solutions
were obtained even for flows with a Grashof number of 107 without any
stabilization techniques. In order to compare the performance of the quadratic
scheme, we have chosen a simpler geometry to avoid additional uncertainities
due to the triangulation of the cylindrical part. This is the topic of the following
section.

4.1.2 Flow in a square cavity. The performance regarding the necessary
computation time to reach a certain error is studied in the following for a
benchmark solution of laminar natural convection flows (Hortmann et al.,
1990). The geometry for the testcase consists of a square cavity with
insulated top and bottom walls and the left wall at a high, the right wall at a
low temperature. The temperature and flow fields for Ra ¼ 105 as predicted
on the finest grid are shown in Figure 6. In order to avoid further influences,
exclusivley homogeneous grids were used in the computations (with the
SIMPLER algorithm) is shown in Figure 7. In order to specify the time
needed to get a solution on a specific grid, the values of the benchmark
properties were recorded during the iterations. The end time is reached,
when no more changes in the relevant properties were found. All
computations were started with a zero solution for the velocity and the
temperature field.

Figure 8(a) shows the predicted percentage error of the local Nusselt
number (estimated grid independent value is Nuloc ¼ 7:72013; its location is
indicated in Figure 6) obtained on different grids compared to values
tabulated in Hortmann et al. (1990). Both interpolation schemes result in a
minor error for a certain number of velocity nodes compared to the
benchmark values. Compared to the linear scheme, the quadratic interpolation

Figure 4.
Buoyancy driven flow in
a complex geometry.
Temperature isolines
(TH 2 TC ¼ 1 K;
interval 0.1 K) (left),
streamlines (middle) and
parts of the used grids
(right)
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results in more accurate results. Second-order monotonic convergence of the
quadratic scheme is found, whereas a convergence one order of magnitude
lower is found for the linear interpolation. The CPU time necessary to get a
certain solution on a specific grid is plotted in Figure 8(b) for the various
interpolation schemes. Although the coefficients resulting from the quadratic
scheme are rather complex compared to the linear interpolation, the
computation time to obtain a converged solution with a certain precision is
smaller.

4.2 Axisymmetric testcases
4.2.1 Rotating disc flow. As an example for a driven flow we have chosen the
flow in a cylinder with a height of 1 cm and a radius of 2.5 cm, whose bottom
plate is rotating at a certain frequency. The density of the fluid is 1,000 kg/m3,
the viscosity 1 · 1023 kg/ms. For validation of the axisymmetric equations
with the quadratic interpolation scheme, comparisons to results obtained with
the commercial code FIDAP have been made. The convergence of the radial
cuts of the azimuthal component to the grid independent values obtained with
FIDAP for different grids is shown in Figure 9, validating the
implementation. For these computations, the rotating frequency was chosen
to be 0.063662 Hz.

Comparisons of the two interpolation schemes at the chosen rotation
frequency did not show significant differences, thus the value was increased to
0.318 Hz, still relatively low in order to obtain a solution even on the coarsest
grid. The value is resulting in a maximum azimuthal velocity of 5 cm/s.
Figure 10 shows the streamfunction and azimuthal velocities for the grid with
12,500 degrees of freedom.

Figure 5.
Predicted local Nusselt
number along the cold

wall (from bottom to top)
for Pr ¼ 10 and Pr ¼ 0.1

for different grids (A-
2927, B-10111, C-15770

velocity nodes, cf.
Figure 4) compared to

benchmark values
(symbols)
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For this test case, a different approach has been chosen to compare the
preformance of both schemes: Calculations (using SIMPLER) were started on
the coarsest grid with zero initial velocities, computed until a given
convergence criterion was reached, then interpolated to the next finer grid to
be used as starting values, and so on.

Calculations were done on grids with about 700, 3,000, 12,500 and 50,000
degrees of freedom for the velocities for both methods. From the results shown
in Figure 11 it is clear that the higher order interpolation not only gives better
results as function of the number of degrees of freedom, but also as a function
of the overall CPU-time. Nevertheless, the difference is smaller when
temperature is also present, as shown in the next example.

Figure 6.
Predicted isotherms
(TH 2 TC ¼ 10 K;
interval 1 K) and
streamlines for a natural
convective flow at Ra ¼
105 and Pr ¼ 0:71

Figure 7.
Segments of the first
grids as used in the
computation (one quarter
of each), corresponding
to 263, 543, 2,255 and
5,995 temperature resp.
989, 2,081, 8,833 and
23,673 velocity nodes in
case of the quadratic
interpolation
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4.2.2 Axisymmetric buoyancy driven flow. As an example for axisymmetric
buoyancy driven flow, a cavity with a radius and height of 1 cm has been
chosen. Top and bottom are at a fixed temperature TC at the side wall a
parabolic temperature profile is applied, with Tmax 2 TC ¼ 20 K: The fluid is
water with the properties r ¼ 1; 000 kg=m3; cp ¼ 4; 181 J=kg K;
m ¼ 0:001 kg=ms and b ¼ 2 · 1024 K21:

The Rayleigh-Number, based on radius and maximum temperature
difference, is 2.73 · 105, the Prandtl-Number is 6.97. As for the case of the
rotating disc, calculations were carried out on grids containing about 700,
3,000, 12,500 and 50,000 degrees of freedom for the velocities, and on refining

Figure 8.
(a) Predicted error of the
local Nusselt number for
the quadratic scheme (†),
linear scheme (O) and the
values in Hortmann et al.
(1990) (B) vs number of

velocity nodes (a) and
CPU time (b)
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the grid interpolated solutions from the previous grid were used as starting
approximations. The SIMPLE algorithm was employed this time in the
calculations.

Figure 12 shows the temperature field and the streamfunction for this
testcase Figure 13 shows the maximal radial velocity as a function of time with
respect to the number of velocity nodes. Again, the better performance of the
quadratic scheme is obvious, although not as much as in the previous case,
where no temperature field had to be resolved.

5. Concluding remarks
A quadratic interpolation scheme for CVFEMs is presented. The proposed
method was validated by comparison to different benchmark solutions, its

Figure 9.
Radial cuts of the
azimuthal velocity at
z ¼ H=2 obtained on
different grids with 394
(A), 1,228 (B), 3,004 (C)
and 6,162 (D) velocity
nodes, compared to
FIDAP calculations (†).
The rotating frequency is
0.063662 Hz

Figure 10.
Azimuthal velocities for
a rotating disc flow in
steps of 0.005 m/s (left)
and isolines of the
streamfunction (right).
The maximal azimuthal
velocity is 0.05 m/s, the
rotating frequency is
0.318 Hz
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Figure 11.
Comparison of the

interpolation schemes for
a rotating disc flow:

(a) max radial velocity vs
no. of free velocity nodes,

(b) max radial velocity
vs. time for rotating disc

flow

Figure 12.
Testcase for an

axisymmetric buoyancy
driven flow. The top and

bottom walls are at a
constant temperature TC,

at the side wall a
parabolic temperature
profile is applied with

Tmax 2 TC ¼ 20 K:
Plotted are temperature
isolines in steps of 2 K

(left) and isolines of the
streamfunction (right)
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performance with regard to accuracy and computation time was compared to a
linear interpolation scheme implemented in the same code. Several outcomes
can be stated:

(1) The benefits of the quadratic interpolation scheme compared to a linear
interpolation are depending on the problem, whereby higher accuracy
of the results from the quadratic interpolation was found for every
testcase.

(2) Although the quadratic interpolation scheme leads to very large matrix
coefficients (especially in case of axisymmetric equations), the necessary
computation time to reach a certain solution error is smaller compared to
the linear interpolation.

Figure 13.
Performance of the
interpolation schemes:
(a) max radial velocity vs
no. of free velocity nodes,
(b) max radial velocity vs
time
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(3) Although not discussed in detail, it should be emphasized that a
simple central difference scheme in the context of the proposed method
leads to stable solutions even for problems with a Grashof number
of 107.
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